September 12th, 2005	Name (Please Print)	
MT 05 - Midterm I - Semeste	· ,	Page 1 of 5

Your	Signature	

Instructions:

Please write your name on every page.

Maximum time is 3 hours.

Maximum possible score is 60.

Score

1.	(15)	
2.	(20)	
3.	(15)	
4.	(15)	
Total.	(60)	

Extra sheets attached(if any):_____

MT 05- Midterm I - Semester I

- 1. An **Elementary family** on Ω is said to be a collection \mathcal{E} of subsets of Ω such that
 - $\bullet \ \emptyset \in \mathcal{E}$
 - if $E, F \in \mathcal{E}$ then $E \cap F \in \mathcal{E}$
 - if $E \in \mathcal{E}$ then E^c is a finite disjoint union of members of \mathcal{E} .

Prove: If \mathcal{E} is an elementary family, the collection \mathcal{A} of finite disjoint unions of members of \mathcal{E} is an algebra.

- 2. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Suppose \mathcal{F} is an algebra such that $\mathcal{A} = \sigma(\mathcal{F})$.
 - (a) Suppose μ is a finite measure and if ν is any other measure on \mathcal{A} with $\mu = \nu$ on \mathcal{F} , then $\mu = \nu$.
 - (b) Suppose μ is a σ -finite on \mathcal{F} (I.e. there exists $\{\Omega_m\} \in \mathcal{F}$ such that $\mu(\Omega_m) < \infty$ and $\bigcup_{m=1}^{\infty} \Omega_m = \Omega$)
 - (i) For every $m \geq 1$. Define $\mathcal{F}|_{\Omega_m} = \{F \cap \Omega_m : F \in \mathcal{F}\}$ and $\mathcal{A}|_{\Omega_m} = \{A \cap \Omega_m : A \in \mathcal{A}\}$. Show that $\sigma(\mathcal{F}|_{\Omega_m}) = \mathcal{A}|_{\Omega_m}$, where the first term in the equality is a σ -algebra in Ω_m .
 - (ii) If ν is any other measure on $\mathcal A$ with $\mu=\nu$ on $\mathcal F$, then show that $\mu=\nu$ on $\mathcal A\mid_{\Omega_m}$ and consequently $\mu=\nu$ on $\mathcal A$.

MT 05- Midterm I - Semester I

3. Let Ω be a non-empty set and \mathcal{A} be the σ -field on Ω generated by $\{A\}$ where A is a non-empty proper subset of Ω . Show that a function $f:\Omega\to\mathbb{R}$ is measurable iff $f=\alpha 1_A+\beta 1_{A^c}$ for some $\alpha,\beta\in\mathbb{R}$

- 4. Let (Ω, \mathcal{B}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable.
 - (a) Define what is meant by saying "X is a simple random variable" and in such a case what is $\int XdP$?
 - (b) Define $\int XdP$ for any random variable X.
 - (c) Consider $\Omega = (0,1], \mathcal{B}$ to the Borel σ -algebra and P to be the Lebesgue measure. Let

$$X_n(\omega) = \sum_{k=0}^{2^n-1} rac{k}{2^n} 1_{(rac{k}{2^n}, rac{k+1}{2^n}]}(\omega)$$

Does X_n converge pointwise and if yes then identify the limit X. Then proceed to evaluate $\int XdP$.